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ABSTR.4CT 

.45 a result of !I’ H mixing. associated productiorl of B-B pairs yields like- 

sign lcpton pairs when both B’s decals semi leptonically. Formulas are given 

for the (:l’ violating charge asymmet,rg of these like-sign pairs. It is argued 

that previous calculations based on quark diagrams are unreliable and t,hat the 

asi lr1111et.ry might, be considerably larger. It, is concluded Lhat a rcasonablr rsti- 

malt’ of the asymmetry lies between IO-” and 10”. but neither the sign nor the 

~nagnilude can be reliably calculated. 



Evidence for B B mixing has been found ’ from the observation of same-sign 

dileptonu from a system originally ront,aining a R-B pair. Neglect,ing errors this 

leads to a value 

A.M 

I- 
= 0.7 

It is possible to search for the CPmviolating charge asymmetry given by2 

N(+-) - N(--) 
a = NC+;) + A\l(- j 2 Irn 

l-12 
C-J .a41 2 

(2) 

where 

I-]:! = 1 tB~ If”. !n) :?l H”. H:,2776(E, EU) (3) 
4 

>%I,:: = I%:: (4) 

AM = 2h4<, i:l:‘: (5) 

Eq. (4) for the B-B mass matrix follows from the box diagram3 considering only 

the intermediate top quarks. The box diagram involves the KM matrix factors 

[, Y~Z \;al’i; (6) 

which are suhjecl T,O thus unitaritj constraint 

5, : .I t -,c,zzo (7) 

The approximation used in obtaining Eq. (2) is I‘,? .21,y 

Thr main prohlrm is the calculation of T‘):. \+‘hercw .\,fI? involves a sum 

over virtual intwrrlcclia~v sl,at,rs which is donlirlalcvi by f I. 1‘12 involves a sum 

over real slaies. The most detailed calculation ii that 11) Hageiin 
4 

who assumes 

t hew states ran b<x described ill t,errns of quark5 (eithrr yy or Qqqq). He calculalcr 

the “al~sorptiw pa’1” of the box diagraln. In this nO,e NC wish t,o look ill an 

alternative approach, 



.4. b(d) -c-ted-(d)-hd (8a) 

BI. h(d) ~- c -~ u i d + (ci) - hd 

82. b(d) -u+tE+d-(d)-bd (86) 

C. ‘44 - 11 4~ u - d + (d) --. bd (SC) 

The (d) represents the “spectator” in t,he initial transition: of course. the role of 

d and d is exchanged if we run the arrows from right to left. In addition to these 

“spectator” decays there are also exchange contribution such as 

\I’e first look at the quark transitions that contribute to the transitions t.o 

the states ‘ri of Eq. (z). There are three classes 

b+d+.c-c-d-b PQ) 

b-d -,,+a-d-6 WI 

\Vr shall emphasizr the spectator graphs. which don1inat.e the calculation of 

Hagrlin. but the exchange graphs do not modif> our general dkuwion. F’or 

each class of t,ransition in Eq. (8) there is a characteristic combination of KII 

A 

B. 

\Vc then writfx 

I‘,? I‘,~, :,:.\I.? 

:,’ 

tu:< 

=2 \ ‘Y 

L’:,“:, .llfl t,jf.v(.- (10) 

To ini~rrprel Lq. (10) WC focus first on t!pc’ :\ transition>. Thew arise from 



a term in H,. of the form 

l:.bl;.h.A T h.c. (11) 

where hA is given explicitly in the appendix. The t,otal width for transitions of 

type .4 is 

rA = !I,.+ * I,&: L (12) 

Here r,, yields the rate expected in the limit m, * 0 and PA is the phase space 

suppression factor. calculat,ed s in the quark spectator model to be 0.12. The 

corresponding expression for the contribution of A type transitions to rt? can be 

written 

T,z(A) = (Vco\;,)’ c ,:B hA in,i !n: hA ~B) 2~;6(E ~ En) 

zz -~,2 C ~‘:il h,4 zji,’ / (CP),,2d(E ‘- E,) (13) 

where we have used a set of intermediate states which are CP eigenstates with 

eigenvalucs (CP),,. \Vr havr used (CP)hA(CP)-’ = hi and the convention 

B” : ib(j 13” db,. wit11 CP B”j = - BC’), CP II?‘>, = - B”‘.. The 

quantity (CF’)..l is thca avrragc value of CP for the intermediate stat,es n con- 

t,ributing to r.,t. The same considerations hold For transitions of type C for which 

PC 1 if we use 777 u emu 0. Comparing Eq. (10) with Eq. (13) we have 

n-1, = -p,(CP), (141 

\vhere I :~~ .A or C. For the> case of &type transitions thv contributions to 

I-l> involve only the interference between thr allowed (\.,.,,\‘u’,) and the doubly- 

suppressed (l.ui,\;,i) transitions. \\v shall also use (CP), for the factor ( ~-21~ 

~6) alt bough it only relates to the CP values associawd with t.his interfwencc 

wrm 



To determine the value of r(, we ma>- relat,e it to the total width. The major 

contrit~ution to r comes from the allowed B-type transitions. 

I-B = I-,:, i17,.!I ? :Yud ?pB 

where pl; is estimated to be .44. Estimating from the quark model the relative 

rates of other non-leptonic decays and using the measured value for semi-leptonic 

decays one estimates that about 55% of all decays are of type B so that 

l-i, - 
.55r 

~I‘,:. ? ~“dI?PB 

In the calculation of Hagelin the main intermediate states are 4-quark (qqqq) 

states and the relative values of the MI in Eq. (10) are det,ermined by phase 

space int,egrals 

MC = F 

where we have kept only the leading order in m,~,m~. The value of fl in Hagelin’s 

calculation is 4,‘s ignoring QCD corrections and approximai.ely unity if they are 

included. Comparing Bagelin’s equations for I‘12 and r yields 

F: -x&fgf = -O.O(j 
771; (17) 

where we have used ifi 1: 140 .Mel. ml, ~~ 5.1 Gel-. The quantities ( r\ll:p,) 



which we have interpreted in Eq. (14) as (CP),? then have the values 

(c-P),4 =~ .39 

(c-P)B = .I2 (18) 

(cP)<. = .06 

where we have set D :~ 1 and m,/mf, = 1,‘3. Substituting Eqs. (16) into Eq. (10) 

and using the unitarit,y relation (i), we obt,ain the Hagelin result 

l-l? = l-i:3 [:;+2b (3’4 (19) 

A point emphasized by Hagelin is that the “leading term? in r12 is propor- 

tional to [iL with the result that it, does not contribute to the asymmetry Eq. (2) 

since .\41? is also proportional to ,$ and so has t,he same phase. Thus t,he asym- 

metry is suppressed by a factor (mcimb)‘. This conforms to t,he expectation that 

in the limit m, - 0, or more rigorously: m, - mu, any CP-violating observable 

like the asymmetry must vanish in the Ii11 model. 

To analyze this lirnil WC rewrite the asymmetry using Eqs. (2). (4). (7). (10). 

and (14) 

I‘,, 1 
’ M, 1 q,s(CI’),4 pfj(CP)fj Im :* PI2 - 5 fyq.(CP),. pR(cP)H; In1 :, iI-1 :t 

WI 

In the limil To:. - 0 we have /II -- 1 and all (CP), b ec&rre equal so 1 hal 0 0. In 

Hagclin’s calculalion the cancellation bet,ween the terms in the brackets is very 

larg(‘ 

P.4((:1’).4 /‘B(Cl’), 
/Y.(Cl’),’ 

PdCI’)t. ~- PB(dP)f, ~ ~~r3 “- 2 
PC~(CP)C~ c ) 

- -0.11 (21) 
771(, 

Ho~ewr. we art’reall!. ver>~ far from t,he limit )r~,, 0 a,s indicalcxd by thr order-of- 

magnitude difference between ~a(> .12) and unit) and the corresponding range 



of values required for (tip), in Eq. (18). Thus. from our point of view. the 

large amour11 of cancellation in Eq. (20) requires very accurale values for the 

quantities (CP),. 

\Ve believe the evaluat,ion of (CP) 1 using quark diagrams is not sufficiently 

accurate even though the final result of Hagelin ma)- give a reasonable order 

of magnitude. At, the quark level t,he factors (dP), represent the degree of 

mismatch in phase space of the quark configuration emergent from b decay (plus 

d spectator) w?lh that of b decay (plus spect,ator d). To get, efficient overlap. 

both the d and d quarks must have bounded momentum in the b rest, frame: thus 

the overall quark configuration is collinrar. From thiy point of view ((II’), may 

be roughly viewed as the fract,ion of final-stat,e phase space leading to collinear 

configurations. However. the physical final st,ates contain several mesons and it 

is unclear that their average CP is accurat,ely represented by the quark model 

picture. 

To be specific. consider the two-meson st,ates D’D- and D’-D’- for class A 

transitions. Given the limited phase space. these states. which are primarily CP- 

ewn. nla!’ play a ma,jor role. The corresponding stateu ibr class C. iiil and pp. are 

likczl!, to tw extremeI> rare b~xaus~~ of t hr large phaw ~paw available for extra 

pionh. The quark n~od(~l. which appears to giw a onvto-on<’ correspondence 

twlwwn Sl-(.$) rclatrd final states. would seem to imply that t,he ratio of the 

rates for these two-meson states is determined by phasr space only. Thus we are 

inclined to dislrust the Iiagrlin rrlatiw values for (Cl’),,1 and (CP)c,. 

.4s ow goes beyond twwmeso~~ states one add- IO t hc, sum in Eq. (3) st,atrs 

wit II ttw opposilr value of CP. Indred all one has io do LO change CP is t,o add a 

wft 7”. For slates of class C t,he sum includes nlan!~ t(‘rn]s of opposiw sign. I-ram 

get~c~ral ideas of dualit! we expect thr quark model ralculat ion to give a reasonable 

wtirnate of this sum. On the other ha,nd becauw of long distancr effects we do 



not expect an acturac~ as good as 10% and so believe the cancellation in Eq. 

(21) ii no1 truslworltr~. 

\\‘r novv l,urn 10 Ilunwrical estimates of the as:!mnetry 0. Using Eqs. (3). 

(5). and (15) 

I‘,, 

.I!, (22) 

where we have used the experimental result of Eq. (1) in the last equality. The 

explicit kill factors in Eq. (20) can be expressed in terms of the CP-odd phase 

invariant .I of Jarlskog. \Vu_ and Greenberg (, 

J = lm&.:; = -l?qu:, 

t 2 Irn 2: = 
i ) 

2LRe & 
Ft y,” ( 1 Et (23) 

Substituting Eqs. (22) and (23) in Eq. (20) we find 

J I c 
0 7.6 ~I.,,, AL ‘I p.dfc:1’).4 p,y(cP)fi; He”‘ y&T)<. ‘- pEI(CP), He:~u = I 

:I :I l 
(24) 

If WC USC t hc nolation i I.,.(; L-r .4x’. l;ub ~ .4X”(p - ir,).l’f(, 7 .4X3(1 p i?]) 

with X = 0.22. then J = il”X”1) and 

n O.fl:r/ { ,P.dcI’).., f~(CI))fi~ Ii - &-(dp)<, &g(c-P)~; (A’ 1)) (25) 

1 /J 

‘~ =~ (, -‘pj’- ,,’ 

The only uncrr(aint> ill rhv numerical rwffiricnt’rornes from thcx use of Eq. (I). 

7‘11~~ value 01’ a varirb i~~wrsrly as (4Af, I‘): thu> tlrc, relarivrly large va111c’ from 

the recent csperimenl has the consequence of dec-reasing the value of a rc1lit~iw 

to earlier evaluations. 

R 



If we use the result of Hagelin. substituting Eq. (18) into Eqs. (24) or (25) 

we find 

(I Y 2.5 > lopq (261 

independent of the LXIUP of p. To fit observed values of E and E’ we need a value 

of q of about, 0.4 within a factor of 2. Thus Eq. (2(i) gives a negative asymmetry 

with a magnitude around 10-3. 

To obt.ain an alternative estimat,e we look only at the contribution to r12 

from class .4 intermediate states. This should give a reasonable upper limit since 

it corresponds to completely eliminating the cancellations in the Hagelin calcu- 

lation. To estimate (CP), we have calculated in the Appendix t,he contributions 

of the intermediate stat.es D-D-. D'+D-, D+D'-. and D"D'-. The calcu- 

lation is carried out using the Stech” factorization approximation which gives 

reasonable results for such measured exclusive decays as B + Dr. If we assume 

all other states cancel this gives 

(WA - 0.23 

and from F,q. (2~5) 

0 = 1.1 . loo Z~.~.‘I(l I’) 
(I p)? t q’ 

(2T) 

(28) 

5.6 I 10~~“sin2Qfl~ 

rvherc /I,,, is the phasr of I,,, irl our c-onvrnli~~ll. S;ir~e 7, : 0 and p c 1. Eq. (28) 

gives a positive value for n. Not<, That if we had arc.epted the value of (cl’)..4 

from Eq. (1 8) t,hc ansv~r would bc I .ti tinws as large. Thus we f&l it is possible 

but very unlikely thal the asymmetry could 1~ as large a: 10~ ‘. f.;q. (2~) is a 

reasonable order-of-magnitude estimate. Fits to t hr Kihl matrix ” based 01, thcz 

!) 



value of E and HUB mixing tend to require isin26’td: c: i. Thus we are led to 

estimates not much biggrr than IO-“. 

Comparing Eqs. (26) and (28) we see ha even the sign of the asymmetry 

is uncertain. Thus we cannot rule out a value even clowr to zero than that 

of Hagelin. Our conclusion is that a reasonable estimate of the asymmetry lies 

brtween 10 3 and 10~’ but that neither the sign nor the magnitude can be 

reliably calculated. 

It has been suggested b>- some authors that, the asymmetry might be increased 

as a result of neu physics. The most likely place for new physics to conw in is 

in contributions t,o All,. For example. it, is possible that t,he large value of 1.11 

might be mainly due to new physics. Onw one uses> as we do here, the empirical 

value of A,!4. the only effect is in changing the phase of MI?. In the Hagelin 

analysis the low value of c1 is in part, due to the fact that rl? and .Irll:! have the 

same phase. However we have argued that this feature of the Hagelin analysis 

is unreliable. Thus while a change in the phase of ,141~ will cert,ainly change the 

asymmetry. WP cannot wII in which direction the change will be and w do not 

rxpect an\ changc3 in OUT ordc,r-of-nlagnitude eslimate. 

This rrsearctr has been supported in part hy the 1T.S. Dcpartmcnt ol Energ!. 

In tllis appendix. WC ronsidrr the contributions of t,he lowest lying 2 meson 

slates to TIz(A). In partic,ular. we give c!slimat,es for D-D-: D’+D-. D-D’ , 

and I) - 11, 

Thr part of the QCD-corrertc,d effective weak Hamiltonian which gives t!-l)e 

A con~rit~nt~ions can bc writlen 

11;; :~ :,hA - :,:h; 



h,4 = F5 [flc”~,Jl ~ y5)bodi-P(1 ~ ys) c” - /?c”?~(I - ^~~)c~d’+‘(l - -;:,)b”] 

(,A.]) 

where u. $ are color indices and fl.2 are QCD correction coefficients. In the 

leading log approximat,ion “‘. choosing the scale I( ^- 5 Gel,. and AQCD 1 .25 Gel’: 

one finds 

f, z 1.14 

(A.2) 
/: z -0.315 

The /z term is a QCD-induced. effective flavor--changing neutral current term. 

Of course. this term disappears in the limit \vhrre QCD corrections are small 

( It - 1: rZ - 0 1. 

Since (CP)~A(CP)-’ = /L; and CP(II’W) : +I> 

(A.3) 

where PDD is the 2%body phase space factor. Similarly, we find 

I-Iz(D~-D’-) = (-l)L’lc; ,<D’+D’- ~ hA $; ~’ p,,,D. (A.4) 

because for total angular momentum zero. CP(D’+ll’-) = (-l)L with L being 

the relative orbital angular momentum of the stale. Since L : 0. 1.2. both 

CP-even and CP-odd are possible. In our calculation we find that I?-,9 is 

predominantly C&even. Finally. since D’D must. have .!, = 1. we find that 

CP II’-II ; := lLI-lV: and 

I‘,2(Il’- D ) 7 r,?(D: I)’ ~) ~~ .;1‘12(DD.) 

= ~:,‘,H I,; /$~I’~~:~ :ll’+D-,hA i%“;; pn.D 

which. except for :,!. is real by tim~reversal symmetry. Because these are not 

Cl’--eigenst,atcs. the sign is not determined b>; (:P. Therrfore. one must bc carrful 

t,o be consistent in phase ronwnt.ion in order IO calrulate the sign. .4s w will 

show. we find the sign t,o be negati\~e. 

11 



To est,imate t,he matrix elements in Eqs. (.4.3-.4.5). WC use the factorization 

approach of Stech*. Specificall>~. for & - D-D this yields 

i,D-D-l h,4 lB’;> z a,<: ;D- Jzcd ;O;, ;D;~ J,“h ,j; 
1’ 2 

(A.6) 

\vhrri~ ~I,!;, =~ Pye(I - ys)b*: etc. The factor a1 is found by combining the 

direct contribution from the fl term in Eq. (4.1) with that from doing a Fiery 

rearrangement of the 12 term. This yields 

al = j, 7 ;,? = 1.04 (.‘t.i) 

The matrix elements in (.4.4) and (.4.5) factorize in a completely analogous \vay. 

lsing Lorentz covariance and parity, the most general forms of the needed 

matrix elements can be written 

(ID-(q) 1 .4ted 0;) = ifDq, (A&) 

(D’-(,q.E) r,y 0) = /DTFlD,C;(Q) (.4.Rb) 

~~D’(k)~l;‘f’~I?(p); : /~+(pi k), -~ fan& I;), (-4.9) 

Il’-(k.E) .4;;‘~H(p)j = -fife,, - ia,[c’ .p)(p+ k), - iL(E .p)(p k), 

(A.lOa) 

(D”(k,E) I$ ,H(p], 7 gcliu,,.i P(k)p”k” (,4.106) 

\\.llW”~” j::. j: a+. and g are real. Lorentz invariant form faciors which dcpen~l 

on 111~ kinematic scalar q’ = (p-k)‘. Th 1 d L em!; constants. ji> and ID.. are also 

real. The relatiw phase betb’een the matrix elernen(u in k;qs. (.4.10i is thr res1111 

of t~imvrwersal synmetry. The remaining pha,ses are the result of a consistent 

choice of phases for pseudoscalar and vector states. 



In the non-rela~tivistic quark model. by comparing” to other decay constants 

which haw been measured. one can estimal~e 

fD - \:‘nzju, = 175 hfeb (.4.11) 

where /~,n. : 0 in our convention 

The form factors in (.4.9) and (.4.10) are calculated in the quark model 

in Ref. 12 by using flavor independence at zero-recoil ( p = 0, k = 0 ) and 

assuming a common q?-dependence, F(q’), b ased on dominance of a B! pole. 

Were. of course. q’ is fixed for the 2Zbody decays and F(q’) suppresses the matrix 

elements. .4s discussed in R.ef. 12. a- and a- cannot be determined separately 

in this method. However, the lower limit of jay = 0.35, derived in Ref. 12 from 

the measurement of the D’ polarization in B 4 D’efi, is used here. 

Since CPJ@(CP)-’ = -Jt, in this convention only the matrix elements in 

(‘4.9) and (.4.10a) change sign under B ---t B, I)+ - D-. Therefore. 

r,z(D+D-) 2 -[,2 $J;C’J; if-(m2, -- &) - f-m$pon 
(A.12) 

z -3,y,:. t*r.cy LIV CU,,~ 

.4iso. since (,4.lOb) does not contribute ( by s!-mmrtry ). we find 

‘, .B 
rl?(DIl’) 1 - :;+ 2,;(:‘fD,/5;j( -j- If +- a+(?,,; - mg., + a-m;~; pan. 

- -9.5 !I. ,.,, 2 I.,,:” 
(A.13) 

Nol,e that this term contribut,es with the same sign as the CP-even st,ates. Finally, 

summing over all polarixalion stales. 

I .> r,,(D’+D’ ) 4 ~~ :,’ ;;“iG’j&T& f [ :(3~.-~)L0-:“)I~~~-21-~) 

i 

.i 
- /a; ,,,; .I -~ 3r 7 1; ~~ 

-i - 

7 
&;(I ~ 47) i/Jil.,, 

i 
r‘ -7.8 ,\,. ,.,,, 2 L,,,’ 

[.4.14) 



where r z (mu TL~.)*. The I.\‘-wrm (g?) gives a positive contribution brrause 

(.4.10b) hr,haw+ diff’errnrl\~ than (.-i.loaj llnder CF. This term giw I,III> 1. I 

contribution and is indred small (- 5’S). 

Therefore. if we only consider these D&type states. we get 

(cP)a z .25 (.4.15) 

where t,he value L;bi = ,038. found in Ref. 12 from semiklept,onic decays with 

/a- = 0.35. has been used. \.arying /a,; from 0.35 to -0.96 in the analysis of 

Ref. 12 has the consequence of increasing the value of ~V,,I from ,038 to ,052. 

I~owrver. thrre is a compensating decrease in the numerical coefficients of Eqs. 

(-4.13) and (14.14) so tha( the value of (C?P)A changes very little. 

We have also est,imated the contributions from the VT and tip intermediate 

states. These arise directly from t,he /:! term in Eq. (A.l), but including the 

Fierz rearrangement they are proportional to CI~ where 

a.: :~ J2 - !J; -Y O.OG (.A.lG) 

\Vhilc WP do not trust this wry sma II value of (12. il ic probahlr tha1 these 

stake arc indeed sup~~rc~~srd wlat iv<. IO thra others we have considered. Our vrr\ 

unccT(ain estimate is that I hrl contribution of thesr s1,al.e~ might increase t,he 

nugnitudr of r,?. and thw ((Zl’j.4. by 2O’;i. 

14 
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